

Update on NOvA Physics Potential

PAC Meeting
Aspen
20 June 2004

Gary Feldman

PAC Questions

- The main thrust of the PAC questions indicated concern over
 - what unique contribution NOvA brings to the world program,
 - how NOvA fits into a longer range Fermilab and world program,
 - and whether near and longer term optimization of NOvA are compatible.
- In this presentation, we will
 - emphasize NOvA's unique role in resolving the mass hierarchy,
 - show that there is a progression of steps that allows the resolution of the mass hierarchy for all values of the CP phase δ and an order of magnitude range of $\sin^2(2\theta_{13})$,
 - show that NOvA is optimized for all stages of this progression, even with reasonable uncertainty on the value of Δm^2 , and
 - in the process, answer all of the PAC's questions.

$P(\nu_{\mu} \rightarrow \nu_{e})$ (in Vacuum)

- $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$
 - $P_1 = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{13}^2 L/E)$
 - $P_2 = \cos^2(\theta_{23}) \sin^2(2\theta_{12}) \sin^2(1.27 \Delta m_{12}^2 L/E)$
 - $P_3 = {}_{\perp} J \sin(\delta) \sin(1.27 \Delta m_{13}^2 L/E)$
 - $P_4 = J \cos(\delta) \cos(1.27 \Delta m_{13}^2 L/E)$

where $J = cos(\theta_{13}) sin(2\theta_{12}) sin(2\theta_{13}) sin(2\theta_{23}) x$ $sin(1.27 \Delta m_{13}^2 L/E) sin(1.27 \Delta m_{12}^2 L/E)$

$P(\nu_{\mu} \rightarrow \nu_{e})$ (in Matter)

• In matter at oscillation maximum, P_1 will be approximately multiplied by $(1 \pm 2E/E_R)$ and P_3 and P_4 will be approximately multiplied by $(1 \pm E/E_R)$, where the top sign is for neutrinos with normal mass hierarchy and antineutrinos with inverted mass hierarchy.

$$E_R = \frac{\Delta m_{13}^2}{2\sqrt{2}G_E\rho_e} \approx 11 \,\text{GeV for the earth}\tilde{\mathbf{G}} \,\text{crust.}$$

About a ±30% effect for NuMI, but only a ±11% effect for JPARC.

However, the effect is reduced for energies above the oscillation maximum and increased for energies below.

New Simulations

- We now have revised and extended simulations
 - Correct an error in the fiducial containment
 - Correct a miscommunication on the assumed flux
 - Optimized for neutrinos and antineutrinos at
 - 6, 8, 10, 12, 14, and 16 km off-axis for $\Delta m^2 = 0.0025 \text{ eV}^2$
 - 8, 10, 12, and 14 km off-axis for $\Delta m^2 = 0.0020 \text{ eV}^2$

Reminder of the Problem Part 1

Smearing of the Ellipses due to Experimental Errors

Proton Driver

More Conventional Approach to Smearing

Point 1

Proton Driver

Point 2

1, 2, 3 σ Contours for Starred Point, Pos Δm^2

Proton Driver

Point 2

1, 2, 3 σ Contours for Starred Point, Pos Δm^2 0.12 $\sin^2(2\theta_{13})$ L = 810 km, 12 km off NOvA 120 10^{20} pot v, 120 10^{20} pot \bar{v} L = 710 km, 30 km off $60\ 10^{20}\ pot\ v$, $60\ 10^{20}\ pot\ \bar{v}$ 0.1 $\Delta m_{23}^2 = 2.5 \cdot 10^{-3} \text{ eV}^2$ 0.08 0.06 0.04 0.02 0 0.5 1.5 δ (π)

2nd Off-Axis Detector

0

δ (π)

1.5

Smearing of the Ellipses due to $\delta \Delta m_{32}^2$

Gary Feldman

Aspen PAC Meeting

20 June 2004

Smearing of the Ellipses due to $\delta \Delta m_{12}^2$ and $\sin^2(2\theta_{12})$

Gary Feldman Aspen PAC Meeting 20 June 2004 13

Smearing of the Ellipses due to $sin^2(2\theta_{32})$

An ambiguity this large could be resolved by the comparison of accelerator and reactor experiments.

Gary Feldman

Aspen PAC Meeting

20 June 2004

Smearing of the Ellipses due to $\sin^2(2\theta_{32})$

 $\circ \delta = 0$ • $\delta = \pi/2$ \square $\delta = \pi$ $\delta = 3\pi/2$ 0.08 0.04 0.06 $P(\bar{v}_{a})$

This ambiguity is benign with respect to measuring the mass hierarchy and CP with accelerator experiments, as seen by a change of variable.

Smearing of the Ellipses due to $sin^2(2\theta_{32})$

Change of variable

Reminder of the Problem Part 1

17

Reminder of the Problem Part 2

FoM² and Asymmetry vs. Angle

$$FoM = \frac{signal}{\sqrt{background}}$$

$$\left(\frac{\sigma_{v} - \sigma_{\bar{v}}}{\sigma_{v} + \sigma_{\bar{v}}}\right)$$

Gary Feldman

3 σ Discovery Potential for $\nu_{\mu} \rightarrow \nu_{e}$

Aspen PAC Meeting

20 June 2004

19

Comparison of 10 and 12 km

Gary Feldman Aspen PAC Meeting 20 June 2004 20

3 σ Discovery Potential for $ν_μ \rightarrow ν_e$ vs. Off-Axis Distance

Note: There is a loss of sensitivity for ∆m² = 0.002 eV², but not a loss of range, since the CHOOZ limit is correspondingly weaker there.

Comparison to MINOS

Gary Feldman

Aspen PAC Meeting

20 June 2004

22

95% CL Resolution of the Mass Hierarchy

Gary Feldman

Aspen PAC Meeting

20 June 2004

Resolution of the Mass Hierarchy

Note that a Proton Driver changes a 1σ effect into a 3σ effect.

Gary Feldman

Aspen PAC Meeting

20 June 2004

Mass Hierarchy Resolution vs. Off-Axis Distance

2 σ Mass Hierarchy Resolution for 1st Quartile δ

12 km off-axis is best for both $\Delta m^2 = 0.0025$ and $\Delta m^2 = 0.0020$ eV²

Note that best SK analysis ("L/E") has best value at 0.0025 eV² and 90% C.L. lower limit at 0.0019 eV².

PAC Question: Are two (1/2) Detectors Better than One?

2 σ Mass Hierarchy Resolution for 1st Quartile δ

Answer: Yes, but not by enough to overcome the fiducial and infrastructure costs.

NOvA Alone vs. T2K Alone

2 σ Resolution of the Mass Hierarchy

Note change of horizontal scale

Proton Drivers

Combination with T2K

Gary Feldman

Aspen PAC Meeting

20 June 2004

28

Combination with T2K, with Proton Drivers and SK

Combination with a 2nd OA Detector at the 2nd Maximum

2 σ Resolution of the Mass Hierarchy

Gary Feldman

Aspen PAC Meeting

20 June 2004

Combination with a 2nd OA Detector at the 2nd Maximum

Gary Feldman

Aspen PAC Meeting

20 June 2004

Mass Hierarchy Resolution vs. Off-Axis Distance

2 σ Mass Hierarchy Resolution for all δ

Again, 12 km provides a good optimization.

Gary Feldman

Mass Hierarchy Resolution Summary

33

Notes on CP Violation

- Relationship to the mass hierarchy will be different for different experiments.
 - Mass hierarchy unimportant for very short baseline experiments, but crucial for long baseline experiments
- CP violation is first order in θ_{13} , non-CP violating terms are mostly second order.
 - Regions where CP violation is flat in θ_{13} and regions with dips and peaks.
- I will use the criterion of fraction of δ for which there is a 3- σ demonstration of CP violation, i.e., $\delta \neq 0$ or π .

3o Demonstration of CP Violation

With proton drivers

(No 3σ CP effect in either T2K or NOvA without them.)

3o Demonstration of CP Violation

Gary Feldman

Aspen PAC Meeting

20 June 2004

3 σ Demonstration of CP Violation

3 σ Demonstration of CP Violation

2nd Off-axis detector at the 2nd maximum

Demonstration of CP Violation

2nd Off-axis detector at the 2nd maximum

Gary Feldman

Aspen PAC Meeting

20 June 2004

Conclusions

- NOvA provides a flexible approach to studying all of the parameters of neutrino oscillations
 - A long baseline approach is crucial in the context of the world program.
 - NOvA is the first stage of a flexible program where each stage can be planned according to what has been learned in previous stages.
 - The range of the NOvA program is comparable to that of other conventional approaches.
 - NOvA can be started now (same scale as NuMI/MINOS).
 - The approval road is long. We need PAC approval now to keep NOvA and the Fermilab neutrino program timely.

Backup Slides

Other US Initiatives

Gary Feldman Aspen PAC Meeting 20 June 2004 42

Brookhaven White Paper

- Brookhaven has proposed an intense proton source to an on-axis massive detector (500 kT) over a very long baseline (>2000 km).
 - Idea is to measure all three parameters simultaneously by measuring 3 oscillation maxima.
 - Water Cerenkov does not provide good electron/ π^0 separation above 1 GeV a factor of 5 better rejection than SuperK is needed. (Liquid argon or TASD?)
 - Range appears to be comparable to the NOvA program, although not explicitly calculated in the same way.
 - Very expensive; could not be done anytime soon, if ever.

Brookhaven Sensitivity to $\nu_{\mu} \rightarrow \nu_{e}$ Signal

Gary Feldman

Aspen PAC Meeting

20 June 2004

Brookhaven Sensitivity to

Doug Michael's FeHo Proposal

- Use 4 MW of power from Fermilab, 2 MW from the Proton Driver as an 8 GeV on-axis beam and 2 MW from the Main Injector as a tunable off-axis beam.
- 16 times the flux of Brookhaven proposal (4 from beam x 4 from distance, 1290 km)
- 100-125 kT liquid argon or TASD (4-5 x NO∨A)
- Sensitivities not well calculated yet.
- Same comment as Brookhaven on cost and schedule.

FeHo Sensitivity to $\nu_{\mu} \rightarrow \nu_{e}$ Signal

90% CL for Excluding Oscillation Parameters

Note: only 90% CL and only for the normal mass ordering

Only QE events
No NC background
(but all intrinsic
v_e included)

Quick TASD Update

Excellent e/μ discrimination

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Locations at Ash River

At Ash River, we Are limited to Distances > 11 km Because "a river Runs through it."